Skip to Main Content

Evidence Based Radiology : Published Articles on Statistics in Radiology

This pilot guide lists information resources on a radiology and radiological sciences. 

Articles on Statistic Methods in Radiology

  • Peskin, A. , Saiprasad, G. , Filliben, J. and Dima, A. (2015), Evaluation of Low-Contrast Detectability of Iterative Reconstruction across Multiple Institutions, CT Scanner Manufacturers, and Radiation Exposure Levels, Radiology, https://doi.org/10.1148/radiol.2015141260 
     
  • Chen-Mayer, H. and Obuchowski, N. (2016), Statistical Issues in Testing Conformance with the Quantitative Imaging Biomarker Alliance (QIBA) Profile Claims, Academic Radiology 
     
  • Fong, J. , Heckert, N. , Filliben, J. , Ma, L. , Stupic, K. , Keenan, K. and Russek, S. (2014), A Design-of-Experiments Approach to FEM Uncertainty Analysis for Optimizing Magnetic Resonance Imaging RF Coil Design, Proc. 2014 International COMSOL Users' Conference, Boston, MA, U.S.A., Boston, MA
     
  • Ahn, S., Park, S. H., & Lee, K. H. (2013). How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology, 267(2), 328-338. doi:10.1148/radiol.12120725
     
  • Anvari, A., Halpern, E. F., & Samir, A. E. (2015). Statistics 101 for Radiologists. Radiographics, 35(6), 1789-1801. doi:10.1148/rg.2015150112
     
  • Benelli, M., Barucci, A., Zoppetti, N., Calusi, S., Redapi, L., Della Gala, G., . . . Pallotta, S. (2020). Comprehensive Analysis of Radiomic Datasets by RadAR. Cancer Res, 80(15), 3170-3174. doi:10.1158/0008-5472.Can-20-0332
     
  • Demircioğlu, A. (2019). Radiomics-AI-based image analysis. Pathologe, 40(Suppl 3), 271-276. doi:10.1007/s00292-019-00704-8
     
  • Dipnall, J. F., Lu, J., Gabbe, B. J., Cosic, F., Edwards, E., Page, R., & Du, L. (2022). Comparison of state-of-the-art machine and deep learning algorithms to classify proximal humeral fractures using radiology text. Eur J Radiol, 153, 110366. doi:10.1016/j.ejrad.2022.110366
     
  • Dreyer, K. J., & Geis, J. R. (2017). When Machines Think: Radiology's Next Frontier. Radiology, 285(3), 713-718. doi:10.1148/radiol.2017171183
     
  • Nakajima, Y., Yamada, K., Imamura, K., & Kobayashi, K. (2008). Radiologist supply and workload: international comparison--Working Group of Japanese College of Radiology. Radiat Med, 26(8), 455-465. doi:10.1007/s11604-008-0259-2
     
  • Obuchowski, N. A., Subhas, N., & Polster, J. (2017). Statistics for Radiology Research. Semin Musculoskelet Radiol, 21(1), 23-31. doi:10.1055/s-0036-1597252
     
  • Park, J. E., Park, S. Y., Kim, H. J., & Kim, H. S. (2019). Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J Radiol, 20(7), 1124-1137. doi:10.3348/kjr.2018.0070
     
  • Psoter, K. J., Roudsari, B. S., Dighe, M. K., Richardson, M. L., Katz, D. S., & Bhargava, P. (2014). Biostatistics primer for the radiologist. AJR Am J Roentgenol, 202(4), W365-375. doi:10.2214/ajr.13.11657
     
  • Varriano, G., Guerriero, P., Santone, A., Mercaldo, F., & Brunese, L. (2022). Explainability of radiomics through formal methods. Comput Methods Programs Biomed, 220, 106824. doi:10.1016/j.cmpb.2022.106824

Articles on Statistic Theories, Methods, Applications

  • Croarkin, C. (2001), Statistics and Measurements, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD 
     
  • Wu, J. and Kacker, R. (2021), Standard Errors and Significance Testing in Data Analysis for Testing Classifiers, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.IR.8383, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932649 
     
  • Yen, J. , Leber, D. and Pibida, L. (2020), Comparing Instruments, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.TN.2106 
     
  • Reiman, A. , Cerfon, A. and McFadden, G. (2015), Tokamak Plasma High Field Side Response to an n = 3 Magnetic Perturbation: A Comparison of 3D Equilibrium Solutions from Seven Different Codes, Nuclear Fusion,  https://doi.org/10.1088/0029-5515/55/6/063026, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917763 
  • Curtin, F., & Schulz, P. (1998). Multiple correlations and Bonferroni's correction. Biol Psychiatry, 44(8), 775-777. doi:10.1016/s0006-3223(98)00043-2

  • Francis, G. (2017). Equivalent statistics and data interpretation. Behav Res Methods, 49(4), 1524-1538. doi:10.3758/s13428-016-0812-3

  • Hou, W., & Carden, D. (2012). Statistics for the nonstatistician: Part II. South Med J, 105(3), 131-135. doi:10.1097/SMJ.0b013e31824b2b69

  • Mishra, P., Pandey, C. M., Singh, U., Keshri, A., & Sabaretnam, M. (2019). Selection of appropriate statistical methods for data analysis. Ann Card Anaesth, 22(3), 297-301. doi:10.4103/aca.ACA_248_18

  • Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J, 24(3), 69-71.

  • Savalei, V., & Rhemtulla, M. (2013). The performance of robust test statistics with categorical data. Br J Math Stat Psychol, 66(2), 201-223. doi:10.1111/j.2044-8317.2012.02049.x

  • Yuan, K. H., Gomer, B., & Marcoulides, K. M. (2022). Smoothed Quantiles for χ2 Type Test Statistics with Applications. Multivariate Behav Res, 57(2-3), 223-242. doi:10.1080/00273171.2020.1858018

Disclaimer: The appearance of hyperlinks does not constitute endorsement by the Department of Defense, Defense Health Agency of non-U.S. Government sites or the information, products, or services contained therein. Although the Darnall Medical Library, WRNMMC may or may not use these sites as additional distribution channels for Department of Defense information, it does not exercise editorial control over all of the information that you may find at these locations. Such hyperlinks are provided consistent with the stated purpose of this website.

Darnall Medical Library | Walter Reed NMMC | Building 1, Room 3458 | 8955 Wood Road | Bethesda, MD 20889 | 301-295-1184/85 | Open Monday-Friday, 0700-1630

After-hours access to the library is available to WRNMMC Staff via the CDO at 301-295-4611.